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We have extended the use of the invariants of spherical harmonics for the characterisation 
of the angular distribution of coordinating atoms about a central atom. These invariants are 
suitable indices for use in clustering algorithms for automatic crystal chemistry. Invariants for 
coordination polyhedra in intermetallic compounds and Ca-O silicates are considered. A 
study of invariants in coordination polyhedra distorted by the Jahn-Teller effect is presented. 
In addition, Invariants from small clusters and the cuboctahedron-icosahedron transition are 
analyzed. 

1. In t roduc t ion  

Steinhardt et al. [25] have developed a method of "shape spectroscopy" which 
can be applied in various ways for characterising bond orientational order in finite 
coordination polyhedra or extended arrays. Bunge [3] had earlier applied similar 
methods, much less lucidly, to metallic textures. 

The method is based on the expression of the directional distribution, repre- 
sented first as a distribution of density on the surface of a sphere, as spherical har- 
monics. These are calculated with respect to an arbitrary system of axes and then 
a series ofinvariants (invariant with respect to rotation of these arbitrary axes) can 
be further calculated. The invariants use the methodology developed for the addi- 
tion of angular momenta in quantum mechanics [15]. A string of invariants of 
increasing order can be defined. Steinhardt et al. used the first two orders. We have 
examined also the next order. Sattinger used Lie algebra of infinitesimal genera- 
tors of the rotation group for obtaining higher orders of invariants [22]. Times for 
computation rise rapidly with complexity. 

The possibility of the construction of invariants arise from the rules for the com- 
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bination of zonal harmonics (with different axes) effectively by resolution of their 
components in a particular direction, summing over the tesseral harmonics. 

The invariants of spherical harmonics can be seen to parallel the invariants of 
structure factors (with respect to crystallographic axes) developed by Karle [14] 
and Hauptmann [9] for solving crystal structures by direct methods. In the study of 
biomolecules by small-angle scattering this can have important application [28]. 

Invariants can be connected with the Landau theory of freezing for the energy 
of structures [13]. They are connected also with the choice of angles for the "double 
magic angle spinning" technique in NMR spectroscopy whereby spinning about 
two icosahedral axes has been shown to be superior to spinning about the two 
angles which represent the second and fourth zeros of the associated Legendre poly- 
nomial (54.7 ° and 30.6 °) [31]. 

We have applied the invariants under rotation to characterise coordination 
polyhedra in intermetallic compounds in Ca-O silicates (O ions about the Ca). 
The behaviour of the invariants for coordination polyhedra distorted by the 
Jahn-Teller effect is also analyzed; here, we find that the most symmetric (most 
stable) structure is easy to identify. Steinhardt et al. [25] have calculated the invar- 
iants from some small clusters. In this paper we have extended the study to other 
clusters generated by the Monte Carlo method. We show that the quasicrystalline 
cluster proposed by Romeu [20] is highly icosahedral. Finally, we study how the 
invariants change during the cuboctahedron-icosahedron transformation. 

In order to represent the results obtained by the invariants, a standard clustering 
program is used [24]. This program calculates generalized distances between all 
pairs of objects to be clustered and a tree diagram or dendrogram is then plotted to 
show similarities and differences. This method has been tried and found to be very 
satisfactory for showing differences in shape. 

2. Spherical harmonics  

The distribution of some variable over the surface of a sphere can be described 
by a series of orthogonal functions, calculated with respect to particular axes, 
usually the spherical coordinates (r, 0, q~), (with their origin at the centre of the 
sphere). The usual functions are the angular parts Yim(O, ~), called spherical harmo- 
nics [18]. Where Ira[ ~< l. The dependence of the variable on r will be ignored here 
for the moment since in our calculation ofinvariants just directions are considered. 
The spherical harmonics can be put as 

/ (2 /+  1)(l-m)!.. , , ,  
Yt,~(0, ~) . . . . . . .  r i /cos , V an(/+m)! 0)e~ (1) 

where P~t (cos 0) is the associated Legendre polynomial. We have used the program 
given by "Numerical Recipes" [19] for calculating the latter. When m = 0 the sphe- 
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rical harmonics divide a sphere into zones by sets of parallel circles; these harmo- 
nics are called zonal harmonics. If  m = l the sphere is divided into perpendicular 
sectors through the points 0 = 0 and 0 = ~; these harmonics are called sectorial. 
When 0 <rn < l the sphere is divided into two sets of circles which correspond to the 
zonal and sectorial harmonics; these are the tesseral harmonics. In order to show 
how the symmetry changes by choosing different spherical harmonics, we have cal- 
culated ~r~ YZ,m for different l's (see fig. 1). 

The coefficients of the various terms change as the axes are rotated, but it is pos- 
sible to calculate quantities which are invariant with respect to this rotat ion and 
which thus can be used to characterise distributions which occur in different orien- 
tations. A series of  invariants can be defined. We have used three which we have 
called, (after Steinhardt et al. [25]) Q, W and Z invariants. 

3. Q invar iants  

Given a series of terms Ytm, each the sum of  the contributions of N atoms for a 
particular polyhedron, invariants can be calculated as follows [25]: 

1 
Otto = ~bo~nd s Ylm, (2) 

[ 47t m=+tlalml2]a/z 

Thus, there is a Q invariant for each value of/.  
Regarding the number of bonds, two different criteria are applied, one, for coor- 

dination polyhedra (CP) and the other, for clusters or small aggregates. In the 
case of  CP we have an atom surrounded by its first neighbours which form a coordi- 
nation shell, so the bonds used in eq. (3) are the lines joining the central a tom with 
each first neighbour. In other words, the number of bonds is equal to the coordina- 
tion number  (number of first neighbours). Here, the bonds are directed from the 
central atom. On the other hand, for small clusters we will consider all the bonds in 
the cluster which have lengths less than or equal to a certain value, for example 
1.2r0 where r0 is the minimum distance between two atoms [8]. In the latter case, the 
bonds are undirected, so that the Q invariants for odd values of l change when the 
direction of  the bond changes, but the even values remain the same since these are 
invariant under inversion. 

4. W invariants  

The expression for the W invariants is [25] 
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ml  ,m2,m3 
V~l ~ ml+m2+m3=O 

where the coefficients 

( , , , )  
D'l 1 m 2 m3 

l l l ) Qt,n, Qtm2 Qtm3 
ml m2 m3 

IEla,ml ] 
m 

(4) 

(s) 

are the 3-j Wigner symbols, used in quantum mechanics in the addition of  angular 
momenta  [15]. The explicit general form of this symbol can be written as 

( llml m212 m313)= [.(ll +12--13)!(11~ +-12--~--13--+--12+13)!(--11+12+13)!] 1 / 2 1 ) !  

X [(ll q- ml)!(ll -- ml)!(12 q- m2)!(12 -- m2)!(13 -t- m3)!(13 -- m3)!] 1/2 

x ff~-'(--1)z+ll-t2-m3/[z!(ll + 12 -- 13 -- Z)!(ll -- ml -- z)! 
Z 

X (12 + m2 -- z)!(13 -- 12 + ml + z)!(13 -- ll -- m2 + z)!] (6) 

The summation is over all integers z but, since the factorial of  a negative number  
is infinite the sum contains only a finite number of terms. We must  recall that 
0! = 1. Talman [26] and Sattinger [22] give information on the symmetry and prop- 
erties of  the 3-j symbols. 

We will see that  structures which are related to the cubic system (tetrahedron, 
cube, octahedron, F e e ,  B e e ,  etc.,) have the same magnitudes of  the W invariants 
up to l = 10 and also present considerable signals in l = 4 and l = 8. Structures 
which are related to icosahedral symmetry (icosahedron, dodecahedron, etc.,) are 
characterised by high magnitudes in l = 6 (see five fold symmetry in fig. 1 e). 

5. Z invar ian ts  

What  we have called the Z invariants involve a quadruple sum with two Wigner 
symbols: 

Zl= ~_j ~_~ (-1)l-m ( / 
ral +ra2+ra5= 0 m3+ra4_ms=O 1 

x [Ql,m, QI,m2QI,m, QI,m,]/[Q4] . 

, , ) ( ,  l l )  
m2 m5 m3 m4 m5 

The derivation of  the last expression came from discussions with Prof. Eliot 
Leader (Birkbeck College, University of London). The Zt invariants thus corre- 
spond to ml + m2 + m3 q- m4 -=- 0. 
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The Q, w and Z invariants have the following characteristics. (1) Each is real. 
(2) The Qj invariants are always positive and are zero for odd values of / if the sys- 
tem is centrosymmetric. (3) The Wt invariants may be positive or negative and van- 
ish for odd /. (4) The Zt invariants are all positive and vanish for odd l. (5) 
Qo, Wo, Zo = 1 as a result of the averaging over atoms. 

6. Testing 

The algebra and the programs for calculating the invariants were checked by 
repeating the calculations of Steinhardt et al. for exact geometric figures (cube, 
octahedron, f.c.c, and h.c.p, packings). They agreed closely. It was also verified 
that the invariants were indeed invariant with respect to the rotation of irregular 
test objects. These calculations were done in double precision but when using data 
on real Ca-O coordination polyhedra single precision was sufficient. Calculations 
were done on a personal computer which limited the use of still higher order invar- 
iants which required a faster machine. Q, W and Z invariants were calculated up 
t o / =  12. 

7. Discr iminat ion 

It is of interest to record the invariants for a number of standard geometrical 
objects to estimate the discrimination of shape and symmetry (see table 1). 

7.1. I N V A R I A N T S  F O R  S T A N D A R D  G E O M E T R I C A L  O B J E C T S  

In real structures the CP are not perfectly symmetric and it is important 
to have a reference in order to establish how far the polyhedron is from being 
"perfect". For this reason, the invariants for standard geometrical objects should 

Table  1 

l, Vl I n v a r i a n t s  fo r  s t a n d a r d  geomet r ica l  objects.  

Polyhedron WE W4 W6 Ws Wl0 W12 

tetrahedron - -0.159317 1.31606E,-2 5.8454E-2 -9.01302E-2 

oc tahedron - 0.159317 1.31606E-2 5.8454E--2 9.01302E-2 

cube - -0.159317 1.31606E-2 5.8454E-2 -9.01302E--2 

icosahedron - - -0 .16975 - - 9 .3968E-2  

dodecahedron - - 0.16975 - - 9 .3968E-2  

cuboc tahedron  - -0.159317 -1 .31606E-2  5.8454E--2 -9 .01302E-2  

H C P  12at - 0.134097 -1 .24419E-2  5.12959E-2 -7.9850E--2 

BCC 14at - 0.159317 1.31606E-2 5.8454E-2 -9 .01302E-2  

pent -b ipyramid 0.239045 0.13409 -9 .3059E-2  7.1229E-2 9.0242E-2 

square  0.239045 0.12497 -7 .2146E-2  6.38E-2 - 1.6309E--2 

2.8806E-2 

2.3946E-2 

2.8806E-2 

9.9039E--2 

- 9 . 9 0 3 9 E - 2  

8.7390E--2 

0.5065E-2 

- 4 . 9 5 7 3 E - 2  

8.46E-2 

4.2356E--2 
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be calculated. The structures considered as standard include the Platonic solids 
(tetrahedron, octahedron, cube, icosahedron and dodecahedron), the cuboctahe- 
dron (FCC), the BCC (15 atoms), the pentagonal bipyramid, pentagon, square, 
equilateral triangle and a single random vector (see figs. 2 and 3). The idea of this 
section is to analyze the important features presented by these structures using the 
invariants. 

The information obtained from the clustering program is represented in tree dia- 
grams or dendrograms in which the length of the horizontal lines indicate how simi- 
lar are two structures. For example, in fig. 4a the tetrahedron and the cube do not 
have horizontal distance, therefore, the invariants considered (I 14~1 and Zt) are the 

a b 

c d 

Fig. 2. Platonic Solids. (a) Tetrahedron, (b) cube, (c) octahedron, (d) dodecahedron, (e) icosahe- 
dron. 
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b 

c d 

Fig. 3. (a) Pentagonal bipyramid, (b) HCP polyhedron, (c) FCC cuboctahedron, (d) BCC 
polyhedron. 

same. The next structure to be more related to the tetrahedron and the cube is the 
octahedron. In this way it is possible to identify groups of structures which share 
similarities. In fig. 4a we get three main groups. The first is composed by the cube, 
tetrahedron, octahedron, and HCP polyhedra, the second, by the icosahedron 
and dodecahedron and the third, by the pentagon, the pentagonal bipyramid, the 
square, the equilateral triangle and the single random vector. In fact, The CP in the 
first group have symmetries compatible with the cubic system. The second group 
is related to icosahedral symmetries and the third contains structures with low sym- 
metry. Therefore, using the Z and the magnitudes or absolute value of the W invar- 
iants it is possible to distinguish among certain levels of symmetry. 

About  the numeric values of the W and Z invariants we note the following: 

1. The I Wt[ up to l = 10 are the same for cubic polyhedra (tetrahedron, cube, octa- 
hedron, FCC cuboctahedron and BCC polyhedron). 

2. The values in l = 4 and l -- 8 are related to cubic symmetries. 
3. For  the icosahedron and the dodecahedron the I Wtl are the same up to / = 12. 

Having the first nonzero invariant in ! = 6 which characterises the icosahedral 
symmetry. 
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Fig. 4. (a) Tree diagram considering I Pet[ and Zt invariants for ideal polyhedra. (b) Qt for odd values 
of/, magnitudes of Vet and Zt invariants for ideal polyhedra. (c) Qt for odd values of/, Pel and ZI invar- 
iants for ideal polyhedra. The dotted boxes indicate groups which share similarities. (a) Different 

kinds of symmetry. (b) Centrosymmetry. (c) Centrosymmetry. 
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4. The HCP polyhedron has its own characteristic invariants different from the cu- 
bic and icosahedral structuresl 

5. The Zt invariants have a similar behaviour as the magnitudes of the W[s. So, ob- 
servations 1 to 4 can be applied to the Z~s. 

As we mentioned in the last section, The Q invariants for odd l's determine 
whether or not the polyhedron is centrosymmetric. Adding this information to the 
characteristics in our clustering program, we are able to distinguish between cen- 
trosymmetric and noncentrosymmetric structures. For example, between the cube 
(centrosymmetric) and the tetrahedron (noncentrosymmetric). Otherwise, just 
using the W or the Z, the distinction is not possible (see figs. 4b and 4c). 

8. Invar iants  of coordination polyhedra in intermetallic compounds 

Daams et al. [4] have extracted different coordination polyhedra for intermetal- 
lic compounds from databases. The information they give is the following: 

1. Fractional coordinates of the coordination polyhedra. 
2. A pictorial 3-dimensional view of the coordination polyhedra. 
3. The atomic environments as realized in the structure [2]. 

The information above is important for giving a qualitative idea of the coordina- 
tion polyhedron, but using the invariants under rotation we can quantify informa- 
tion from the polyhedron and therefore, characterise it. 

We have calculated the invariants Q, W and Z for all the 24 coordination polyhe- 
dra of the intermetallic compounds given by Daams [4]. 

In order to show more clearly our results, we have divided the CP of intermetal- 
lic compounds into two groups. In figs. 5a and 5b, two dendrograms with I Wtl 
and Zt are represented. The idea of these figures is to see how different levels of sym- 
metry are related. We notice that all the CP are far from being icosahedral, 
although there are relationships among FCC and BCC packings. In figs. 6a, 6b, 7a 
and 7b the Qt for odd l's are introduced for analyzing centrosymmetry. These 
results indicate that of all 24 CP, 10 are centrosymmetric. These centrosymmetric 
CP are the following: 

1. CuaMg with Cu in the center CN = 12 (CuMg2 in the diagram). 
2. BaPb3 with Ba in the center CN = 12 (BaPbl in the diagram). 
3. BaPb3 with Pb in the center CN = 12 (BaPb3 in the diagram). 
4. CaCus with Ca in the center CN = 18 (CaCul in the diagram). 
5. CaCu3 with Cu in the center CN = 12 (CaCu3 in the diagram). 
6. A14Ba with Ba in the center CN = 22 (A1Bal in the diagram). 
7. Cu4Si4Zr3 with Zr in the center CN = 20 (CuSil in the diagram). 
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ICOS HCP 
BaPb2 FCC 
BCC B~bl 
BaPb3 CaCu2 
CuSi3 

CuSi5 
CuSil } ~  

Cu~j2 ................. CaCa3 
AIBa2 ~Catl 

Alllal 

BErl t er 3 -7 ) 
A1Ba3 

a 

L 

b 

ICOS 

XCP BaPtA _ ~  

FCC I 
BCC 

CuSi2 

Xgl(l 

CuSi4 Xg](2 I 
Hg](3 

fief,4 } ...... 

P~TAGO~L BIP, 

Fig. 5. (a, b) I W) I and Zt for intermetallic compounds. 

8. B2Erlr3 with Er in the center CN = 20 (BErl in the diagram). 
9. B2ErIr3 with Ir in the center CN = 14 (BEr2 in the diagram). 
10. B2Erlr3 with Ir in the center CN = 14 (BEr3 in the diagram). 

The notat ion used in the diagrams or dendrograms includes the symbols of 
the elements which compose the CP and a number which identifies the different 
CP in the same structure. The CP are given in the same order as in Daams'  clas- 

sification [4]. 
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............. i 

] 
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Fig. 6. (a, b) Qt for odd values of l, Magnitudes of Wt and Zt invariants for intermetallic 
compounds. 

8.1. THE JAHN-TELLER EFFECT 

Sometimes, the distortions in a polyhedron can be caused by non-bonding elec- 
t ron  effects such as those due to d-electrons in transition metal compounds.  One of  

these is know as the Jahn-Teller effect and consists in axial distortions of  an octahe- 

dron [30]. Two opposite bonds of  the octahedral  CP are shorter or longer than the 

other four  bonds. This effect can be studied by calculating the Wt invariants for dif- 
ferent c/a ratios. It is important  to note here that  we have to consider all the 

18 bounds in the polyhedron because just considering the directional coordinat ion 
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Fig. 7. (a, b) Qt for odd values of/, WI and ZI invariants for intermetallic compounds. 

of  the central a tom (6 bonds), we will not  obtain information about  the distor- 
tion. In our calculations, we use bond directions and not  magnitudes.  The results 
obtained are interesting for two main reasons. First, because we can measure  the 
degree of  distortion and second, because the perfect oc tahedron is easy to identify. 
In fig. 8a we can see that when the octahedron is compressed, the W[s, with l = 2, 
change to positive sign and if we pull out the structure, we get a negative value. 
Looking at figs. 8b to 8fit  is trivial to see at which values ofc /a  (c/a -- dv'~/a -- 1) 
we get the perfect octahedron since the most  symmetric structure is characterised 
by a critical point, a minimum (l -- 6), a max imum (l -- 4, l = 10, l = 12) and an 
inflexion point (l = 8). 
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Fig. 8 (continued on next pages). 

9. C a - O  p o l y h e d r a  

The coordinat ion of  oxygen ions about  calcium is notoriously variable, coordi- 
nat ion numbers  varying from about  5 to 9, so that  it is of  importance to develop 

a me thod  o f  characterising such polyhedra from data available in the Inorganic 
Crystal  Structure Database  (ICSD), assuming that  O ions are all at the same dis- 
tance f rom the central calcium ion. 
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Fig. 8 (continued). 

As a test invariants for a variety of Ca-O polyhedra were calculated and the 
results were used as data for clustering, together with invariants from standard 
polyhedra. This shows that various nearly regular coordination polyhedra can be 
picked out automatically. 

Each oxygen atom was given unit weight when calculating the invariants but var- 
ious weighting systems could be devised for different purposes. For example, 
weights proportionate to 1/r 2 would represent the solid angles subtended by each 
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c/a 
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Fig. 8. (a-f)  Invariants  during Jahn-Teller distort ions in octahedral  coordinat ion.  (a) WI = 2, (b) 
Hit = 4, (c) Hit = 6, (d) Hit = 8, (e) WI = 1 O, (f) Wt = 12. 

oxygen ion at the calcium ion. Indeed it is possible that a sum out to large distances 
could be made  to converge if a sttitable inverse power of  r were used. ~ i s  c o ~ d  
show the symmetry  of  the electrostatic field in which the central ion was situated as 
in the Morse theory. 

In figs. 9a, 9b and 9c, dendrograms which represent the invariants are shown. 
In these figures (9a, 9b and 9c), we have been consistent with the system followed in 
the last two sections. This means, that first we use the W~ and the Zt invariants for 
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studying symmetry relations (fig. 9a) and then, the Ql invariants are considered 
for analyzing centrosymmetry (see figs. 9b and 9c). 

10. Clusters 

The study of clusters or small aggregates is necessary in the description of 
atomistic models of different structures like liquids [7,1 ], twinned particles, quasi- 
crystals and amorphous solids [21]. Hoare has studied stable small clusters (mini- 
mum potential energy) where non-crystalline symmetries are present [10]. In fact, 
in computing simulated annealing with one minimum interatomic potentials like 
Lennard-Jones (6-12), Morse, Lennard-Jones (4-7) etc., the symmetry which pre- 
dominates is Icosahedral [27]. It is interesting to see that, depending on the size, one 
can find different symmetries in the same material [12]. Due to frustration effects, 
clusters with one kind of atoms cannot grow to "infinity", but it seems that by 
introducing different sorts of atoms the frustration can be alleviated to some extent 
[20]. Nowadays, it is common to use the Monte Carlo method (simulated anneal- 
ing) and molecular dynamics to generate clusters. The most common ways for char- 
acterising these are by radial distribution, bond distribution and angular 
distribution [27]. The radial distribution consists in analyzing how the atoms are 
arranged according to their distance from the center of mass. The bond distribution 
uses the different distances between pairs of atoms in order to give an idea about 
how the bonds are present in the cluster. The angular distribution uses the angles 
between the bonds in the cluster. It is difficult to use these distributions to describe 
symmetric features of the cluster, but using the invariants we can characterise the 
cluster and say something about its symmetry. Therefore, the invariants can be 
seen as a complementary tool for studying small clusters. 

The small clusters considered here were computed by simulated annealing 
(Monte Carlo) using the Lermard-Jones (6-12) potential (one minimum potential) 
[27]. In particular, for the calculation of the invariants, we use the clusters com- 
posed of 4 (tetrahedron), 7 (pentagonal bipyramid), 13 (icosahedron), 19, 23, 26 
and 33 (dodecahedral) atoms since these have been reported as magic numbers in 
mass spectroscopy experiments with argon [5]. In fact, 7, 13, 19, 23 and 26 atom 
clusters present strong minima of potential energy. Other aggregates introduced 
are the FCC cuboctahedron and the HCP (hexagonal close packing), both with 
13 atoms (see fig. 10). 

In order to characterise clusters by invariants, all the first neighbour bonds in 
the aggregate will be taken into account. The criterion consists in considering all 
the bonds with distances less or equal than 1.2r0 [8], [25] (where r0 is the equilibrium 
position in a Lennard-Jones type potential). Note that the bonds are not directed, 
so the Qt for odd values of l change if we scramble the coordinates, but the even 
values remain the same since these are invariant under inversion. It is important to 
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a b C 

d e f 

h i 

Fig. 10. (a) N = 7 (pentagonal bipyramid), (b) HCP N = 13, (c) FCC N = 13, (d) icosahedron 
N = 13, (e) N = 19, (f) N = 23, (g) N = 26, (h) N = 33 (dodecahedron), (i) N = 317 quasicrystalline 

cluster. 

ment ion  here that, in clusters, the surface to volume ratio is high and sometimes 
there is no central a tom as in the case of  CP (coordination polyhedra).  

Using the magnitudes of  the W) invariants, the tree diagram shown in fig. 1 l a  is 
obtained.  Here,  we can distinguish three main groups. The first is related to cubic 
symmetries,  the second, to icosahedral symmetries, and the third, to clusters with a 
lower type of  symmetry.  With regard to the first group, it is interesting to see the 



176 H. Terrones, A.L. Mackay / Invariants for coordination polyhedra 

FCC N:::I3 

~26 

HCP N::I3 

~C H::I5 

ICOS N=I3 

ROI~ H:317 

DODE H::33 

H::23 

H:19 

PENT H:7 __J 

TET~ H::4 

ICOS H:I3 

RO~JJ H::317 

DODE 14=33 

~C H::15 

FCC H': 1.3 

N:19 

H:23 

H::26 

PDIT Ik7 

IICP ~13 

I 

b 

Fig. 11. (a) Magnitudes of tz~ for small clusters. (b) tgt invariants for small clusters. 

presence of the cluster of 26 atoms. In fact, this has tetrahedral symmetry plus mir- 
ror planes that contain 3-fold and 2-fold axes which generate 4-fold rotat ion reflex- 
ion axes (Td or 43m). In the second group, the icosahedron N = 13, the Romeu  
N = 317 and the dodecahedral N = 33, all present icosahedral symmetry. The 
N = 317 cluster is proposed by Romeu  [20] as quasicrystalline model with icosahe- 
dral symmetry. Therefore, this agrees with the results obtained from the invar- 
iants. Finally, in the third group composed by the N --- 7 pentagonal bipyramid 
(decahedron), the N = 19 and the N = 23, we see that  a common feature is that  all 
have low symmetries and are formed by an exact number of  decahedra 1, 3 and 4, 
respectively. 

In fig. 1 lb  the signs of the W/s are included with the main idea of discriminating 
among some estructures with the same magnitudes (same symmetry) as in the 
case of  the icosahedral clusters, and the FCC and tetrahedron. 
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10.1. THE CUBOCTAHEDRON-ICOSAHEDRON TRANSITION 

In 1962, Mackay [17] studied an icosahedral packing of equal spheres and its 
transformation into a cuboctahedral array of atoms (a cubic close-packed assem- 
bly) pointing out the possibility of natural occurrence of the icosahedral clusters. In 
fact, there is experimental evidence of the cuboctahedron-icosahedron transition 
in small gold particles and argon clusters [12], [6] and [16]. 

According to energy calculations with a Lennard-Jones potential, icosahedral 
clusters are more favorable than cuboctahedral clusters [29], but there is a critical 
size at which cuboctahedral structures start to be more stable. Some authors 
[29,6,16] have suggested that the icosahedral-cuboctahedral (fee-crystalline) tran- 
sition takes place at sizes between 3000 and 4000 atoms. 

We have studied how the I wI invariants change when the symmetry changes by 
calculating the invariants under rotation during different stages of the transition 
process (see figs. 12 and 13). Signals in I = 4 and / = 8 decrease and signals in l = 6 
and I = 10 increase. Note that high values in l = 4 and l = 8 are characteristic of 
cubic assemblies, and high values in / = 6 and l = 10 are representative of icosahe- 
dral symmetry. 

11. Maxwell ' s  theory ofinvariants  

J.C. Maxwell showed [11] that spherical harmonics I~m, which are designed to 
be solutions of Laplace's equation V V = 0, can be equivalently represented as the 
superposition of the potentials due to charge dipoles at the origin. For example, the 
tesseral harmonic Ym ~ can be produced by n - m dipoles along the z axis and m 
others distributed in the equatorial plane at angular intervals ofn/m. 

FCC-ICOS D 

IFCC-ICOS I~ 

FCC-ICOS C 

FCC 

FCC-IC~ A 

FCC-lC~ B 

t 
Fig. 12. (a) The cuboctahedron-icosahedron transition, (b) tree diagram showing the invariants 

during different stages of the transition. 
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Fig. 13 (continued on next pages). 

In a way, the Ca-O polyhedra, regarded from a sufficient distance, are them- 
selves materealizations of such aggregates of dipoles. 

It might be further investigated whether the invariants can be found to be combi- 
nations of the invariants of standard regular polyhedra and looked up on as super- 
posed waveforms. 

12. Conc lus ion  

It has been shown that the invariants under rotation provide useful information 
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Fig. 13 (continued). 

for characterising coordination polyhedra and clusters. Due to the sensitivity of 
these invariants it is possible to differentiate between symmetric and slightly dis- 
torted structures, and also to establish common features related to the symmetry 
and shape of different arrangements of atoms. On the other hand, important char- 
acteristics of the structures studied have been obtained by using a simple clustering 
algorithm which considers the invariants as input data. Since the necessary infor- 
mation for calculating the invariants can be found in data bases like the Inorganic 
Crystal Structure Data Base (ICSD), it is possible to establish an automatic way for 
characterising, quite efficiently, a great number of structures. 
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Fig. 13. Histograms with the magnitudes of Wt during the transition. (a) FCC cuboctahedron. (b) 
FCC-ICOS A. (c) FCC-ICOS B. (d) FCC-ICOS C. (e) FCC-ICOS D. (f) Perfect icosahedron. 
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